Nonlocal First-Order Hamilton–Jacobi Equations Modelling Dislocations Dynamics
نویسندگان
چکیده
منابع مشابه
Nonlocal First-order Hamilton-jacobi Equations Modelling Dislocations Dynamics
We study nonlocal first-order equations arising in the theory of dislocations. We prove the existence and uniqueness of the solutions of these equations in the case of positive and negative velocities, under suitable regularity assumptions on the initial data and the velocity. These results are based on new L1-type estimates on the viscosity solutions of first-order HamiltonJacobi Equations app...
متن کاملNonlocal higher order evolution equations
In this paper we study the asymptotic behavior of solutions to the nonlocal operator ut(x, t) = (−1) n−1 (J ∗ Id − 1)n (u(x, t)), x ∈ R which is the nonlocal analogous to the higher order local evolution equation vt = (−1)(∆)v. We prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. Moreover, we prove that the solutions of the nonlocal problem conver...
متن کاملar X iv : m at h / 06 03 57 0 v 1 [ m at h . A P ] 2 4 M ar 2 00 6 NONLOCAL FIRST - ORDER HAMILTON - JACOBI EQUATIONS MODELLING DISLOCATIONS DYNAMICS
We study nonlocal first-order equations arising in the theory of dislocations. We prove the existence and uniqueness of the solutions of these equations in the case of positive and negative velocities, under suitable regularity assumptions on the initial data and the velocity. These results are based on new L 1-type estimates on the viscosity solutions of first-order Hamilton-Jacobi Equations a...
متن کاملFirst order linear fuzzy dynamic equations on time scales
In this paper, we study the concept of generalized differentiability for fuzzy-valued functions on time scales. Usingthe derivative of the product of two functions, we provide solutions to first order linear fuzzy dynamic equations. Wepresent some examples to illustrate our results.
متن کاملEvolution Equations in Ostensible Metric Spaces: First-order Evolutions of Nonsmooth Sets with Nonlocal Terms
Similarly to quasidifferential equations of Panasyuk, the so-called mutational equations of Aubin provide a generalization of ordinary differential equations to locally compact metric spaces. Here we present their extension to a nonempty set with a possibly nonsymmetric distance. In spite of lacking any linear structures, a distribution-like approach leads to so-called right-hand forward soluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Partial Differential Equations
سال: 2006
ISSN: 0360-5302,1532-4133
DOI: 10.1080/03605300500361446